Data Set 7az

Sound Analytical Services, Inc. WA 291

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

12.7.97 8a

December 7, 1992

To: BURLINGTON ENVIRONMENTAL ENGINEERING

PROJECT NUMBER: 624878

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 27678

Samples were taken on 10/8/92, and received at SAS on 10/9/92. The samples were analyzed for semivolatile organics by EPA 8270, total petroleum hydrocarbons by EPA 418.1 modified for soils, and total petroleum fuel hydrocarbons by EPA 8015 modified.

SEMIVOLATILE ORGANICS-

Samples -1, -2, -3, -4, -5, -6, and -7 were extracted on 10/19/92, and analyzed on 10/25/92 using EPA method 8270. Both sample extraction and analysis were within holding times. Sample -4 was diluted due to high matrix interferences, causing all compounds to be below the PQL's. Di-n-butylphthalate was found in the method blank at levels above the PQL. This was flagged as B on all sample results. This compound is a common laboratory contaminant. Di-n-butylphthalate failed the quality control limits for duplicate RPD, and was flagged X4a to note this. All other quality control parameters were within acceptance limits.

TOTAL PETROLEUM FUEL HYDROCARBONS-

Samples -1, -2, -3, -4, -5, -6, and -7 were extracted on 10/14/92, and analyzed on 10/22/92 by EPA method 8015 modified, both within the holding times. All samples were flagged X2, noting the non-typical elution patterns. These samples carried over from the Diesel range organics into heavier hydrocarbon ranges. Sample -4 was flagged E in addition, noting the sample concentration exceeded the calibration range, so this should be considered an estimated quantity. Sample -4 also had X10 flagged on the surrogates, noting the matrix interferences in the sample caused the surrogate recoveries to exceed QC limits. All other quality control parameters were within acceptance limits.

TOTAL PETROLEUM HYDROCARBONS-

Samples -1, -2, -3, -4, -5, -6, and -7 were extracted and analyzed on 10/13/92, both within holding times. The samples were analyzed using EPA method 418.1 modified for soils. All quality control parameters were met.

FILE COP

All samples were dry weight corrected.

No blank correction was used

Data qualifier flags are included in the quality control package.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental Date: December 1, 1992

Engineering

Report On: Analysis of Soil

Lab No.: 27678

Page 1 of 28

IDENTIFICATION:

Samples Received on 10-09-92

Project: 624878 Pier 91

ANALYSIS:

Lab No. 27678-1

Client ID: CP-114-2-4

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-25-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	680	
111-44-4	bis(2-Chloroethyl) ether	ND	680	
95-57-8	2-Chlorophenol	ND	680	
541-73-1	1,3-Dichlorobenzene	ND	680	
106-46-7	1,4-Dichlorobenzene	ND	680	
100-51-6	Benzyl Alcohol	ND	1,400	
95-50-1	1,2-Dichlorobenzene	ND	680	
95-48-7	2-Methylphenol	ND	680	
39638-32-9	bis(2-Chloroisopropyl)ether	ND	680	
106-44-5	4-Methylphenol	ND	680	
621-64-7	N-Nitroso-Di-N-propylamine	ND	680	
67-72-1	Hexachloroethane	ND	680	
98-95-3	Nitrobenzene	ND	680	
78-59-1	Isophorone	ND	680	
88-75-5	2-Nitrophenol	ND	680	
105-67-9	2,4-Dimethylphenol	ND	680	
65-85-0	Benzoic Acid	ND	3,400	
111-91-1	bis(2-Chloroethoxy)methane	ND	680	
120-83-2	2,4-Dichlorophenol	ND	680	
120-82-1	1,2,4-Trichlorobenzene	ND	680	
91-20-3	Naphthalene	ND	680	
106-47-8	4-Chloroaniline	ND	1,400	
87-68-3	Hexachlorobutadiene	ND	680	
59-50-7	4-Chloro-3-methylphenol	ND	1,400	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 2 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-1

EPA Method 8270 Continued

Client ID: CP-114-2-4

EPA Method	8270 Concinued			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
91-57-6	2-Methylnaphthalene	ND	680	
77-47-4	Hexachlorocyclopentadiene	ND	680	
88-06-2	2,4,6-Trichlorophenol	ND	680	
95-95-4	2,4,5-Trichlorophenol	ND	680	
91-58-7	2-Chloronaphthalene	ND	680	
88-74-4	2-Nitroaniline	ND	3,400	
131-11-3	Dimethyl phthalate	ND	680	
208-96-8	Acenaphthylene	ND	680	
606-20-2	2,6-Dinitrotoluene	ND	680	
99-09-2	3-Nitroaniline	ND	3,400	
83-32-9	Acenaphthene	ND	680	
51-28-5	2,4-Dinitrophenol	ND	3,400	
100-02-7	4-Nitrophenol	ND	3,400	
132-64-9	Dibenzofuran	ND	680	
121-14-2	2,4-Dinitrotoluene	ND	680	
84-66-2	Diethylphthalate	ND	680	
7005-72-3	4-Chlorophenyl phenyl ether	ND	680	
86-73-7	Fluorene	ND	680	
100-01-6	4-Nitroaniline	ND	3,400	
534-52-1	4,6-Dinitro-2-methylphenol	ND	3,400	
86-30-6	N-Nitrosodiphenylamine	ND	680	
101-55-3	4-Bromophenyl phenyl ether	ND	680	
118-74-1	Hexachlorobenzene	ND	680	
87-86-5	Pentachlorophenol	ND	3,400	
85-01-8	Phenanthrene	ND	680	
120-12-7	Anthracene	ND	680	

ND - Not Detected

Di-n-butylphthalate

84-74-2

Continued

ND 4,500

680

B

Burlington Environmental, Engineering

Project: 624878 Page 3 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-1

Client ID: CP-114-2-4

EPA Method 8270 Continued

2211 11001100				-
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND N	680 680 680 1,400 680 680 680 680 680 680 680	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	87	35 - 114	23 - 120
	88	43 - 116	30 - 115
	96	33 - 141	18 - 137
	89	10 - 94	24 - 113
	87	21 - 100	25 - 121
	95	10 - 123	19 - 122

Burlington Environmental, Engineering Project: 624878
Page 4 of 28
Lab No. 27678
December 1, 1992

Lab No. 27678-1

Client ID: CP-114-2-4

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

840

TPH Per EPA SW-846 Modified Method 8015
Date Extracted: 10-14-92
Date Analyzed: 10-22-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

1,300 X2

TPH as

Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane 120

o-terphenyl 207 X10

Burlington Environmental, Engineering

Project: 624878 Page 5 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-2

Client ID: CP-114-6-8

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-27-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	780	
111-44-4	bis(2-Chloroethyl) ether	ND	780	
95-57-8	2-Chlorophenol	ND	780	
541-73-1	1,3-Dichlorobenzene	ND	780	
106-46-7	1,4-Dichlorobenzene	ND	780	
100-51-6	Benzyl Alcohol	ND	1,600	
95-50-1	1,2-Dichlorobenzene	ND	780	
95-48-7	2-Methylphenol	ND	780	
39638-32-9		ND	780	
106-44-5	4-Methylphenol	ND	780	
621-64-7	N-Nitroso-Di-N-propylamine	ND	780	
67-72-1	Hexachloroethane	ND	780	
98-95-3	Nitrobenzene	ND	780	
78-59-1	Isophorone	ND	780	
88-75-5	2-Nitrophenol	ND	780	
105-67-9	2,4-Dimethylphenol	ND	780	
65-85-0	Benzoic Acid	ND	3,900	
111-91-1	bis(2-Chloroethoxy)methane	ND	780	
120-83-2	2,4-Dichlorophenol	ND	780	
120-82-1	1,2,4-Trichlorobenzene	ND	780	
91-20-3	Naphthalene	ND	780	
106-47-8	4-Chloroaniline	ND	1,600	
87-68-3	Hexachlorobutadiene	ND	780	
59-50-7	4-Chloro-3-methylphenol	ND	1,600	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 6 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-2

CAS No.

86-73-7

100-01-6

534-52-1

101-55-3

118-74-1

87-86-5

85-01-8

84-74-2

120-12-7

86-30-6

EPA Method 8270 Continued

Compounds

Fluorene

4-Nitroaniline

Hexachlorobenzene

Pentachlorophenol

Di-n-butylphthalate

Phenanthrene

Anthracene

4,6-Dinitro-2-methylphenol

4-Bromophenyl phenyl ether

N-Nitrosodiphenylamine

Client ID: CP-114-6-8

Concentration

ug/kg

ND

ND

ND

ND

ND

ND

ND

ND

ND

2,300

PQL

780

780

780

780

780

780

780

B

3,900

3,900

3,900

Flag

91-57-6	2-Methylnaphthalene	ND	780	
77-47-4	Hexachlorocyclopentadiene	ND	780	
88-06-2	2,4,6-Trichlorophenol	ND	780	-
95-95-4	2,4,5-Trichlorophenol	ND	780	
91-58-7	2-Chloronaphthalene	ND	780	
88-74-4	2-Nitroaniline	ND	3,900	
131-11-3	Dimethyl phthalate	ND	780	
208-96-8	Acenaphthylene	ND	780	
606-20-2	2,6-Dinitrotoluene	ND	780	
99-09-2	3-Nitroaniline	ND	3,900	
83-32-9	Acenaphthene	ND	780	
51-28-5	2,4-Dinitrophenol	ND	3,900	
100-02-7	4-Nitrophenol	ND	3,900	
132-64-9	Dibenzofuran	ND	780	
121-14-2	2,4-Dinitrotoluene	ND	780	
84-66-2	Diethylphthalate	ND	780	
7005-72-3	4-Chlorophenyl phenyl ether	ND	780	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 7 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-2

EPA Method 8270 Continued

Client ID: CP-114-6-8

DT 17 11001100	,oar o conteamed			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND	780 780 780 1,600 780 780 780 780 780 780 780	

ND - Not Detected

53-70-3

191-24-2

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Semi-Volatile Surrogates

Surrogate	Percent	Control	
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅	78	35 - 114	23 - 120
2-Fluorobiphenyl	91	43 - 116	30 - 115
p-Terphenyl-d ₁₄	98	33 - 141	18 - 137
Phenol-d ₆	63	10 - 94	24 - 113
2-Fluorophenol	75	21 - 100	25 - 121
2,4,6-Tribromophenol	110	10 - 123	19 - 122

Continued

ND

ND

780

780

Burlington Environmental, Engineering Project: 624878 Page 8 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-2

Client ID: CP-114-6-8

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

480

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-14-92

Date Analyzed: 10-14-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

1,900 X2

TPH as

Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane 116 o-terphenyl 208

Burlington Environmental, Engineering

Project: 624878 Page 9 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-3

Client ID: CP-115A-2-4

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-24-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	710	
111-44-4	bis(2-Chloroethyl) ether	ND	710	
95-57-8	2-Chlorophenol	ND	710	
541-73-1	1,3-Dichlorobenzene	ND	710	
106-46-7	1,4-Dichlorobenzene	ND	710	
100-51-6	Benzyl Alcohol	ND	1,400	
95-50-1	1,2-Dichlorobenzene	ND	710	
95-48-7	2-Methylphenol	ND	710	
39638-32-9	bis(2-Chloroisopropyl)ether	ND	710	
106-44-5	4-Methylphenol	ND	710	
621-64-7	N-Nitroso-Di-N-propylamine	ND	710	
67-72-1	Hexachloroethane	ND	710	
98-95-3	Nitrobenzene	ND	710	
78-59-1	Isophorone	ND	710	
88-75-5	2-Nitrophenol	ND	710	
105-67-9	2,4-Dimethylphenol	ND	710	
65-85-0	Benzoic Acid	ND	3,500	
111-91-1	bis(2-Chloroethoxy)methane	ND	710	
120-83-2	2,4-Dichlorophenol	ND	710	
120-82-1	1,2,4-Trichlorobenzene	ND	710	
91-20-3	Naphthalene	ND	710	
106-47-8	4-Chloroaniline	ND	1,400	
87-68-3	Hexachlorobutadiene	ND	710	
59-50-7	4-Chloro-3-methylphenol	ND	1,400	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 10 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-3

Client ID: CP-115A-2-4

EPA Method 8270 Continued

LIA MCCMOU	0270 Concinued			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene	ug/kg ND ND ND ND ND ND ND ND ND N	710 710 710 710 710 710 710 710 710 710	Flag
85-01-8 120-12-7 84-74-2	Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	ND ND 1,400	710 710 710	В

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 11 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-3

Client ID: CP-115A-2-4

EPA Method 8270 Continued

<u> </u>	0270 Concinued			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND N	710 710 710 1,400 710 710 710 710 710 710 710 710 710	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	82	35 - 114	23 - 120
	85	43 - 116	30 - 115
	91	33 - 141	18 - 137
	90	10 - 94	24 - 113
	84	21 - 100	25 - 121
	81	10 - 123	19 - 122

Burlington Environmental, Engineering

Project: 624878 Page 12 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-3

Client ID: CP-115A-2-4

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

36

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-14-92

Date Analyzed: 10-14-92

Total Petroleum

Fuel Hydrocarbons, mg/kg

50 X2

TPH as

MANN Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane 95 o-terphenyl 104

Burlington Environmental, Engineering

Project: 624878 Page 13 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-4

Client ID: CP-115A-6-8

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-30-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	4,000	
111-44-4	bis(2-Chloroethyl) ether	ND	4,000	
95-57-8	2-Chlorophenol	ND	4,000	
541-73-1	1,3-Dichlorobenzene	ND	4,000	
106-46-7	1,4-Dichlorobenzene	ND	4,000	
100-51-6	Benzyl Alcohol	ND	8,000	100
95-50-1	1,2-Dichlorobenzene	ND	4,000	
95-48-7	2-Methylphenol	ND	4,000	-
39638-32-9			4,000	1
106-44-5	4-Methylphenol	ND	4,000	
621-64-7	N-Nitroso-Di-N-propylamine	ND	4,000	
67-72-1	Hexachloroethane	ND	4,000	al
98-95-3	Nitrobenzene	ND	4,000	
78-59-1	Isophorone	ND	4,000	
88-75-5	2-Nitrophenol	ND	4,000	
105-67-9	2,4-Dimethylphenol	ND	4,000	
65-85-0	Benzoic Acid	ND	20,000	
111-91-1	bis(2-Chloroethoxy)methane	ND	4,000	
120-83-2	2,4-Dichlorophenol	ND	4,000	
120-82-1	1,2,4-Trichlorobenzene	ND	4,000	
91-20-3	Naphthalene	ND	4,000	
106-47-8	4-Chloroaniline	ND	8,000	
87-68-3	Hexachlorobutadiene	ND	4,000	
59-50-7	4-Chloro-3-methylphenol	ND	8,000	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 14 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-4

EPA Method 8270 Continued

Client ID: CP-115A-6-8

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
91-57-6	2-Methylnaphthalene	ND	4,000	
77-47-4	Hexachlorocyclopentadiene	ND	4,000	
88-06-2	2,4,6-Trichlorophenol	ND	4,000	
95-95-4	2,4,5-Trichlorophenol	ND	4,000	
91-58-7	2-Chloronaphthalene	ND	4,000	
88-74-4	2-Nitroaniline	ND	20,000	
131-11-3	Dimethyl phthalate	ND	4,000	
208-96-8	Acenaphthylene	ND	4,000	
606-20-2	2,6-Dinitrotoluene	ND	4,000	
99-09-2	3-Nitroaniline	ND	20,000	
83-32-9	Acenaphthene	ND	4,000	
51-28-5	2,4-Dinitrophenol	ND	20,000	
100-02-7	4-Nitrophenol	ND	20,000	
132-64-9	Dibenzofuran	ND	4,000	
121-14-2	2,4-Dinitrotoluene	ND	4,000	
84-66-2	Diethylphthalate	ND	4,000	
7005-72-3	4-Chlorophenyl phenyl ether	ND	4,000	
86-73-7	Fluorene	ND	4,000	
100-01-6	4-Nitroaniline	ND	20,000	
534-52-1	4,6-Dinitro-2-methylphenol	ND	20,000	
86-30-6	N-Nitrosodiphenylamine	ND	4,000	
101-55-3	4-Bromophenyl phenyl ether	ND	4,000	
118-74-1	Hexachlorobenzene	ND	4,000	
87-86-5	Pentachlorophenol	ND	20,000	
		1.000	4 000	1

ND - Not Detected

Phenanthrene

Di-n-butylphthalate

Anthracene

85-01-8

84-74-2

120-12-7

Continued

ND

ND

ND

4,000

4,000

4,000

Burlington Environmental, Engineering

Project: 624878 Page 15 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-4

Client ID: CP-115A-6-8

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	4,000 4,000 8,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	100	35 - 114	23 - 120
	120	43 - 116	30 - 115
	92	33 - 141	18 - 137
	88	10 - 94	24 - 113
	89	21 - 100	25 - 121
	90	10 - 123	19 - 122

Burlington Environmental, Engineering Project: 624878 Page 16 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-4

Client ID: CP-115A-6-8

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

13,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-14-92 Date Analyzed: 10-22-92

Total Petroleum Fuel Hydrocarbons, mg/kg 22,000 E, X2

TPH as Aged Gasoline, Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane o-terphenyl

288 233

X10 X10

Burlington Environmental, Engineering

Project: 624878 Page 17 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-5

Client ID: CP-122A-2-4

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-24-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	720	
111-44-4	bis(2-Chloroethyl) ether	ND	720	
95-57-8	2-Chlorophenol	ND	720	
541-73-1	1,3-Dichlorobenzene	ND	720	
106-46-7	1,4-Dichlorobenzene	ND	720	
100-51-6	Benzyl Alcohol	ND	1,400	
95-50-1	1,2-Dichlorobenzene	ND	720	
95-48-7	2-Methylphenol	ND	720	
39638-32-9		ND	720	
106-44-5	4-Methylphenol	ND	720	
621-64-7	N-Nitroso-Di-N-propylamine	ND	720	
67-72-1	Hexachloroethane	ND	720	
98-95-3	Nitrobenzene	ND	720	
78-59-1	Isophorone	ND	720	
88-75-5	2-Nitrophenol	ND	720	
105-67-9	2,4-Dimethylphenol	ND	720	
65-85-0	Benzoic Acid	ND	3,600	
111-91-1	bis(2-Chloroethoxy)methane	ND	720	
120-83-2	2,4-Dichlorophenol	ND	720	
120-82-1	1,2,4-Trichlorobenzene	ND	720	
91-20-3	Naphthalene	ND	720	
106-47-8	4-Chloroaniline	ND	1,400	
87-68-3	Hexachlorobutadiene	ND	720	
59-50-7	4-Chloro-3-methylphenol	ND	1,400	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 18 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-5

Client ID: CP-122A-2-4

CAS No. Compounds	ation ug/kg ND	PQL	Flag
City in the composition of the city is a city in the c	ND		
91-57-6 77-47-4 88-06-2 2,4,6-Trichlorophenol 91-58-7 2-Chloronaphthalene 88-74-4 131-11-3 208-96-8 606-20-2 2,6-Dinitrotoluene 99-09-2 3-Nitroaniline 83-32-9 Acenaphthene 51-28-5 2,4-Dinitrophenol 100-02-7 4-Nitrophenol 132-64-9 Dibenzofuran 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 Anthracene Pintachlorophenol Phenanthrene 210-12-7 84-74-2 Di-n-butylphthalate Pintachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	ND N	720 720 720 720 720 3,600 720 720 3,600 3,600 720 720 720 720 720 720 720 720 720 7	B,J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 19 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-5

Client ID: CP-122A-2-4

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	720 720 720 720 1,400 720 720 720 720 720 720 720 720 720	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	. Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	66	35 - 114	23 - 120
	66	43 - 116	30 - 115
	76	33 - 141	18 - 137
	82	10 - 94	24 - 113
	71	21 - 100	25 - 121
	78	10 - 123	19 - 122

Burlington Environmental, Engineering

Project: 624878 Page 20 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-5

Client ID: CP-122A-2-4

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

36

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-14-92

Date Analyzed: 10-22-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

140 X2

TPH as

Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane 94 o-terphenyl 96

Burlington Environmental, Engineering

Project: 624878 Page 21 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-6

Client ID: CP-122A-6-8

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-27-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	790	
111-44-4	bis(2-Chloroethyl) ether	ND	790	
95-57-8	2-Chlorophenol	ND	790	
541-73-1	1,3-Dichlorobenzene	ND	790	
106-46-7	1,4-Dichlorobenzene	ND	790	
100-51-6	Benzyl Alcohol	ND	1,600	
95-50-1	1,2-Dichlorobenzene	ND	790	
95-48-7	2-Methylphenol	ND	790	
39638-32-9		ND	790	
106-44-5	4-Methylphenol	ND	790	
621-64-7	N-Nitroso-Di-N-propylamine	ND	790	
67-72-1	Hexachloroethane	ND	790	
98-95-3	Nitrobenzene	ND	790	
78-59-1	Isophorone	ND	790	
88-75-5	2-Nitrophenol	ND	790	
105-67-9	2,4-Dimethylphenol	ND	790	
65-85-0	Benzoic Acid	ND	4,000	
111-91-1	bis(2-Chloroethoxy)methane	ND	790	
120-83-2	2,4-Dichlorophenol	ND	790	
120-82-1	1,2,4-Trichlorobenzene	ND	790	
91-20-3	Naphthalene	ND	790	
106-47-8	4-Chloroaniline	ND	1,600	
87-68-3	Hexachlorobutadiene	ND	790	
59-50-7	4-Chloro-3-methylphenol	ND	1,600	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 22 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-6

Client ID: CP-122A-6-8

EPA Method 8270 Continued

BIT I IIC CIICG	0270 Concinded			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene	ug/kg ED E	790 790 790 790 790 790 790 790 4,000 4,000 790 790 790 790 790 790 790 790 790	Flag
87-86-5 85-01-8 120-12-7 84-74-2	Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	ND ND ND 2,300	4,000 790 790 790	В

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 23 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-6

Client ID: CP-122A-6-8

EPA Method 8270 Continued

1111 110 0110 a	OZ / O COMOZMICO			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND N	790 790 790 1,600 790 790 790 790 790 790 790	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

<u>Semi-Volatile Surrogates</u>

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	67	35 - 114	23 - 120
	76	43 - 116	30 - 115
	93	33 - 141	18 - 137
	53	10 - 94	24 - 113
	61	21 - 100	25 - 121
	73	10 - 123	19 - 122

Burlington Environmental, Engineering

Project: 624878 Page 24 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-6

Client ID: CP-122A-6-8

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

180

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 10-14-92 Date Analyzed: 10-22-92

Total Petroleum

Fuel Hydrocarbons, mg/kg 415 X2

TPH as Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane 53 o-terphenyl 101

Burlington Environmental, Engineering

Project: 624878 Page 25 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-7

Client ID: CP-922A-6-8

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-19-92 Date Analyzed: 10-27-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
108-95-2	Phenol	ND	810	
111-44-4	bis(2-Chloroethyl) ether	ND	810	
95-57-8	2-Chlorophenol	ND	810	
541-73-1	1,3-Dichlorobenzene	ND	810	
106-46-7	1,4-Dichlorobenzene	ND	810	
100-51-6	Benzyl Alcohol	ND	1,600	
95-50-1	1,2-Dichlorobenzene	ND	810	
95-48-7	2-Methylphenol	ND	810	
39638-32-9	bis(2-Chloroisopropyl)ether	ND	810	
106-44-5	4-Methylphenol	ND	810	
621-64-7	N-Nitroso-Di-N-propylamine	ND	810	
67-72-1	Hexachloroethane	ND	810	
98-95-3	Nitrobenzene	ND	810	
78-59-1	Isophorone	ND	810	
88-75-5	2-Nitrophenol	ND	810	
105-67-9	2,4-Dimethylphenol	ND	810	
65-85-0	Benzoic Acid	ND	4,100	
111-91-1	bis(2-Chloroethoxy)methane	ND	810	
120-83-2	2,4-Dichlorophenol	ND	810	
120-82-1	1,2,4-Trichlorobenzene	ND	810	
91-20-3	Naphthalene	ND	810	
106-47-8	4-Chloroaniline	ND	1,600	
87-68-3	Hexachlorobutadiene	ND	810	
59-50-7	4-Chloro-3-methylphenol	ND	1,600	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 26 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-7

Client ID: CP-922A-6-8

EPA Method 8270 Continued

EPA Method	8270 Continued			
CAS No.	Compounds	Concentration ug/kg	PQL	Flag
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 84-74-2	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorophenol Phenanthrene Anthracene Di-n-butylphthalate		810 810 810 810 810 4,100 810 810 4,100 4,100 810 810 810 810 810 810 810 810 810	В
		-,500		

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 27 of 28 Lab No. 27678 December 1, 1992

Lab No. 27678-7

Client ID: CP-922A-6-8

EPA	Met	cnoc	<u>5. 1</u>	12	/	U	C	0	n	τ	1	n	u	e	<u>a</u>	
																_

CAS No.	Compounds	Concentration ug/kg	PQL	Flag
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND N	810 810 810 1,600 810 810 810 810 810 810 810	

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control Limits			
Compound	Recovery	Water	Soil		
Nitrobenzene - d ₅	65	35 - 114	23 - 120		
2-Fluorobiphenyl	71	43 - 116	30 - 115		
p-Terphenyl-d ₁₄	83	33 - 141	18 - 137		
Phenol-d ₆	52	10 - 94	24 - 113		
2-Fluorophenol	58	21 - 100	25 - 121		
2,4,6-Tribromophenol	73	10 - 123	19 - 122		

Burlington Environmental, Engineering Project: 624878
Page 28 of 28

Lab No. 27678 December 1, 1992

Lab No. 27678-7

Client ID: CP-922A-6-8

TPH Per EPA Method 418.1 Date Extracted: 10-13-92 Date Analyzed: 10-13-92

Total Petroleum Hydrocarbons, mg/kg

200

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 10-14-92 Date Analyzed: 10-22-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

400

TPH as

Diesel, Heavy Oil

SURROGATE RECOVERY, %

1-chlorooctane o-terphenyl

90

97

SOUND ANALYTICAL SERVICES

DENNIS L. BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental - Engineering

Lab No:

27678qc1

Matrix:

Soil

Units: Date:

mg/kg

December 1, 1992

DUPLICATE

27678-7

Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Hydrocarbons	200	190	5.1

RPD = Relative Percent Difference

 $= [(S - D) / ((S + D) / 2] \times 100$

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MCD No 27679-7

MSD NO. 27678-7						
Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Spike Dup Result (MSD)	RPD
Total Petroleum Hydrocarbons	200	1,100	930	96.8	1,000	9.5

%R = Percent Recovery

 $= [(MS - SR) / SA] \times 100$

RPD = Relative Percent Difference

 $= [(MS - MSD) / ((MS + MSD) / 2] \times 100$

METHOD BLANK

MEIROD BLAN	μ\
Parameter	Blank Value
Total Petroleum Hydrocarbons	< 10

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client:

Burlington Environmental - Engineering

Lab No:

27678qc2

Matrix:

Soil

Units:

mg/kg

Date:

December 1, 1992

DUPLICATE

Dup. No. 27678-7

Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Fuel Hydrocarbons	400	370	7.8
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	90 97	53 107	

RPD = relative percent difference
=
$$[(S - D) / ((S + D) / 2)] \times 100$$

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MSD No. 27678-7

Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	ŧп	Spike Dup Result (MSD)	RPD
Total Petroleum Fuel Hydrocarbons	400	940	405	130	1,100	16

%R = Percent Recovery

 $= [(MS - SR) / SA] \times 100$

RPD = Relative Percent Difference

 $= [(MS - MSD) / ((MS + MSD) / 2] \times 100$

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client:

Burlington Environmental - Engineering

Lab No:

27678qc2

Matrix:

Soil

Units:

mg/kg

Date:

December 1, 1992

METHOD BLANK

Blank No. 003F0101.D	
Parameter	Blank Value
Total Petroleum Fuel Hydrocarbons	< 10
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	90 89

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

OUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 1 of 3

Client:

Burlington Environmental - Engineering

Lab No:

27678qc3

Units:

ug/kg

Date:

December 1, 1992

METHOD BLANK

Compound	Blank Value	PQL	Flags
Phenol	ND	660	
bis(2-Chloroethyl) ether	ND	660	
2-Chlorophenol	ND	660	
1,3-Dichlorobenzene	ND	660	
1,4-Dichlorobenzene	ND	660	
Benzyl Alcohol	ND	1,300	
1,2-Dichlorobenzene	ND	660	
2-Methylphenol	ND	660	
bis(2-Chloroisopropyl)ether		660	
4-Methylphenol	ND	660	
N-Nitroso-Di-N-propylamine	ND	660	
Hexachloroethane	ND	660	
Nitrobenzene	ND	660	
Isophorone	ND	660	
2-Nitrophenol	ND	660	
2,4-Dimethylphenol	ND	660	
Benzoic Acid	ND	3,300	
bis(2-Chloroethoxy)methane	ND	660	
2,4-Dichlorophenol	ND	660	
1,2,4-Trichlorobenzene	ND	660	
Naphthalene	ND	660	
4-Chloroaniline	ND	1,300	
Hexachlorobutadiene	ND	660	
4-Chloro-3-methylphenol	ND	1,300	
2-Methylnaphthalene	ND	660	
Hexachlorocyclopentadiene	ND	660	
2,4,6-Trichlorophenol	ND	660	
2,4,5-Trichlorophenol	ND	660	
2-Chloronaphthalene	ND	660	
2-Nitroaniline	ND	3,300	-
Dimethyl phthalate	ND	660	
Acenaphthylene	ND	660	

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 2 of 3

Client:

Burlington Environmental - Engineering

Lab No:

27678qc3

Units:

ug/kg

Date:

December 1, 1992

METHO)	D BLANK		
Compound	Blank Value	PQL	Flags
		PQL 3,300 660 3,300 660 660 660 660 3,300 3,300 660 660 660 660 660 660 660 660 660	Flags
Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND N	660 660 1,300 660 660 660 660 660 660 660	

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 3 of 3

Client:

Burlington Environmental - Engineering

Lab No:

27678qc3

Units:

ug/kg

Date:

December 1, 1992

ND = Not Detected.

PQL = Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

SEMIVOLATILE SURROGATES

	DEMI VOLAI	THE SURROGATES		-
Surrogate	Percent Recovery	Control Water	Limits Soil	
Nitrobenzene - d5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-TBP	93 89 96 90 89 89	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 1 of 3

Client: Burlington Environmental - Engineering

Lab No: 27678qc4

Matrix: Soil Units: ug/kg

Date: December 1, 1992

Dup No: 27678-1

DUPLICATE

Compound	Sample (S)	Duplicate (D)	RPD	FLAGS
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate		8 8		

OUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 2 of 3

Client:

Burlington Environmental - Engineering

Lab No:

27678qc4

Matrix:

Soil

Units:

ug/kg

Date:

December 1, 1992

Dup No:

27678-1

DUPLICATE

	DUPLICATE			
	Sample	Duplicate		
Compound	(S)	(D)	RPD	FLAGS
Acenaphthylene	ND	ND	0.0	
3-Nitroaniline	ND	ND	0.0	
Acenaphthene	ND	ND	0.0	
2,4-Dinitrophenol	ND	ND	0.0	
4-Nitrophenol	ND	ND	0.0	
Dibenzofuran	ND	ND ND	0.0	
2,4-Dinitrotoluene	ND	ND ND	0.0	
2,6-Dinitrotoluene	ND ND	ND ND	0.0	
Diethylphthalate		ND	0.0	
4-Chlorophenyl phenyl ether Fluorene	ND ND	ND	0.0	
4-Nitroaniline	ND ND	ND	0.0	
4,6-Dinitro-2-methylphenol	ND ND	ND	0.0	
N-Nitrosodiphenylamine	ND ND	ND	0.0	
4-Bromophenyl phenyl ether	ND	ND	0.0	
Hexachlorobenzene	ND ND	ND	0.0	
Pentachlorophenol	ND ND	ND	0.0	
Phenanthrene	ND	ND	0.0	
Anthracene	ND ND	ND	0.0	
Di-n-butylphthalate	4,500	3,200	33.8	X4
Fluoranthene	ND	ND	0.0	
Pyrene	ND	ND	0.0	
Butyl benzyl phthalate	ND	ND	0.0	
3,3'-Dichlorobenzidine	ND	ND	0.0	
Benzo(a)anthracene	ND	ND	0.0	
bis(2-ethylhexyl)phthalate	ND	ND	0.0	
Chrysene	ND	ND	0.0	
Di-n-octyl phthalate	ND	ND	0.0	
Benzo(b) fluoranthene	ND	ND	0.0	
Benzo(k) fluoranthene	ND	ND	0.0	
Benzo(a)pyrene	ND	ND	0.0	
Indeno(1,2,3-cd)pyrene	ND	ND	0.0	
Dibenz(a,h)anthracene	ND	ND	0.0	
Benzo(q,h,i)perylene	ND	ND	0.0	

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 3 of 3

Client: Burlington Environmental - Engineering

Lab No: 27678qc4

Matrix: Soil Units: ug/kg

Date: December 1, 1992

Dup No: 27678-1

DUPLICATE

ND = Not Detected

RPD = Relative Percent Difference = $[(S - D) / ((S + D) / 2] \times 100$

SEMIVOLATILE SURROGATES

Surrogate	Sample	Duplicate		l Limits Soil
Nitrobenzene - d5	87	90	35 - 114	23 - 120
2-Fluorobiphenyl	88	96	43 - 116	30 - 115
p-Terphenyl-d14	96	97	33 - 141	18 - 137
Phenol-d6	89	94	10 - 94	24 - 113
2-Fluorophenol	87	91	21 - 100	25 - 121
2,4,6-TBP	95	100	10 - 123	19 - 122

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

SOIL MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name: Burlington Environmental - Engineering

Lab No:

27678qc5

Date:

December 1, 1992

SEMI-VOLATILE ORGANICS						
SPIKE (ug/kg)	SAMPLE RESULT	CONC	% REC	CONC MSD	% REC	RPD
3,400	ND	2,700	77	2,800	82	6.2
3,400	ND	2,900	83	3,100	91	9.2
3,400	ND	2,400	69	2,500	73	5.6
3,400	ND	2,900	84	3,900	113	29.0
3,400	ND	3,100	90	3,300	95	5.4
3,400	ND	2,300	68	2,500	73	7.1
3,400	ND	2,100	61	2,300	66	7.9
3,400	ND	2,700	78	2,900	84	7.4
3,400	ND	3,000	88	3,200	94	6.6
3,400	ND	3,000	87	2,500	74	7.7
3,400	ND	1,500	44	2,000	57	26.0
	SPIKE (ug/kg) 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400 3,400	SPIKE (ug/kg) SAMPLE (ug/kg) RESULT 3,400 ND 3,400 ND	SPIKE (ug/kg) RESULT MS 3,400 ND 2,700 3,400 ND 2,900 3,400 ND 2,400 3,400 ND 2,900 3,400 ND 3,100 3,400 ND 2,300 3,400 ND 2,300 3,400 ND 2,700 3,400 ND 3,000 3,400 ND 3,000	SPIKE (ug/kg) SAMPLE (ug/kg) CONC MS % REC 3,400 ND 2,700 77 3,400 ND 2,900 83 3,400 ND 2,400 69 3,400 ND 2,900 84 3,400 ND 3,100 90 3,400 ND 2,300 68 3,400 ND 2,700 78 3,400 ND 3,000 88 3,400 ND 3,000 87	SPIKE (ug/kg) SAMPLE RESULT CONC MS % EC CONC MSD 3,400 ND 2,700 77 2,800 3,400 ND 2,900 83 3,100 3,400 ND 2,400 69 2,500 3,400 ND 2,900 84 3,900 3,400 ND 3,100 90 3,300 3,400 ND 2,300 68 2,500 3,400 ND 2,700 78 2,900 3,400 ND 3,000 88 3,200 3,400 ND 3,000 87 2,500	SPIKE (ug/kg) RESULT CONC MS REC MSD REC 3,400 ND 2,700 77 2,800 82 3,400 ND 2,900 83 3,100 91 3,400 ND 2,400 69 2,500 73 3,400 ND 2,900 84 3,900 113 3,400 ND 3,100 90 3,300 95 3,400 ND 2,300 68 2,500 73 3,400 ND 2,100 61 2,300 66 3,400 ND 2,700 78 2,900 84 3,400 ND 3,000 88 3,200 94 3,400 ND 3,000 87 2,500 74

RPD = Relative Percent Difference

[%] REC = Percent Recovery

*QC Limits:	RPD	% RECOVERY
1,2,4-Trichlorobenzene	23	38-107
Acenaphthene	19	31-137
2,4 Dinitrotoluene	47	28-89
Pyrene	36	35-142
N-nitrosodi-n-		
Propylamine	38	41-126
1,4-Dichlorobenzene	27	28-104
Pentachlorophenol	47	17-109
Phenol	35	26-90
2-Chlorophenol	50	25-102
4-Chloro-3-Methylphenol	33	26-103
4-Nitrophenol	50	11-114

^{*} These are advisory limits only.